Multi-source Neural Activity Estimation and Sensor Scheduling: Algorithms and Hardware Implementation

نویسندگان

  • Lifeng Miao
  • Stefanos Michael
  • Narayan Kovvali
  • Chaitali Chakrabarti
  • Antonia Papandreou-Suppappola
چکیده

Electroencephalography (EEG) and magnetoencephalography (MEG) measurements are used to localize neural activity by solving the electromagnetic inverse problem. In this paper, we propose a new approach based on the particle filter implementation of the probability hypothesis density filter (PF-PHDF) to automatically estimate the unknown number of time-varying neural dipole sources and their parameters using EEG/MEG measurements. We also propose an efficient sensor scheduling algorithm to adaptively configure EEG/MEG sensors at each time step to reduce total power consumption. We demonstrate the improved performance of the proposed algorithms using simulated neural activity data. We map the algorithms onto a Xilinx Virtex-5 field-programmable gate array (FPGA) platform and show that it only takes 10 ms to process 100 data samples using 6,400 particles. Thus, the proposed system can support real-time processing of an EEG/MEG neural activity system with a sampling rate of up to 10 kHz.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling

With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...

متن کامل

Efficient Bayesian Tracking of Multiple Sources of Neural Activity

Electrical neural activity detection and tracking have many applications in clinical as well as in brain computer interfaces (BCI). In this study, we focus on development of advanced signal processing algorithms to track neural activity and their efficient hardware implementation to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a sequential Monte Carlo ...

متن کامل

Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms

Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...

متن کامل

Implementation of a Low- Cost Multi- IMU by Using Information Form of a Steady State Kalman Filter

In this paper, a homogenous multi-sensor fusion method is used to estimate the trueangular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial MeasurementUnits (IMU). An information form of steady state Kalman filter is designed to fuse the output of four lowaccuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware isimplemen...

متن کامل

Sensor Network Lifetime Maximization Via Sensor Trees Construction and Scheduling

In this paper we consider state estimation carried over a sensor network. A fusion center forms a local multi-hop tree of sensors and fuses the data into a state estimate. A set of sensor trees with desired properties is constructed, and those sensor trees are scheduled in such a way that the network lifetime is maximized. The sensor tree construction and scheduling algorithms are shown to have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing Systems

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2013